Design and Analysis of Algorithms

1 Semester, 2024-25, Indian Statistical Institute, Bangalore

End Term Examination ; marks 100, Time Limit - 3 hours

November 6, 2024

1. A Greedy Algorithm. [54+10+45=20]
A set of tasks T' = {t1,t2,...,tn} is given. Each task is an interval t; = (s;, fi) the
start and finish times respectively of the task (s; < fi).

A set of tasks is feasible if and only if no two task intervals intersect. For example the
task set {(1,10), (5,20), (15,20)} is infeasible, however the task set {(1,10), (10, 15), (18,20)}
is feasible.

The problem is to find the largest possible subset S C T of the given task set which
is feasible.

The greedy approach is as follows: Initially S is empty, i.e., S = {}. At each iteration
we find among the remaining tasks, the task with minimum finish time, which when
added to S keeps S feasible. We repeat this until we can add no more tasks.

(a) Show that above greedy approach solves the problem and finds a feasible set S
with largest possible size.

(b) Write the algorithm as pseudo code.

(c) Analyse the running time for your algorithm.

2. Longest Path in a DAG. [15+5=20]

You are given a Directed Acyclic Graph G(V, E) where each edge has an associated
non-negative length.

(a) Give the pseudo-code of a linear time algorithm (including any other sub-algorithms
it may use) to determine the longest directed path in the given graph (the length
of a path is the sum of the lengths of the edges in the path).

(b) Justify the running time.

3. HITTINGSET is NP-Complete. [54+15=20]

The HITTINGSET problem is defined as follows: You are given the following: A set S
of n items, a collection of m subsets of S : C1,Cy,..,Cyy,, and thirdly an integer K.
The problem is to determine if there is some subset X C S of at most K so that X
has at least one element in common with each subset C; in the given collection.

(a) Show why HITTINGSET is in NP.

(b) Prove that HITTINGSET is NP-Hard by giving a polynomial time reduction from
the vertex cover problem.
Hint: Note the strong similarity between this problem and vertex cover problem,
where m edges are like subsets of size 2 of the n vertices of the vertex set.



4. Stable Supplier-Consumer Flow Problem [154+5=20]

You are given a directed graph G(V, E') with n vertices(or nodes) and m edges. Each
edge is marked with a positive integer called the edge capacity. The edge capacity
indicates the maximum units that can flow on a (directed) edge.

Additionally, some nodes are also are marked with a non-zero integer.

For a node v if this integer, d, is positive, it indicates the node wishes to supply d,
units into the network (it is a supplier node). This means that the total flow on edges
of G coming out of v needs to be greater than the total flow on edges coming into v
by the amount d,.

Similarly, if the node is marked with an integer —d, (i.e., a negative integer) it indi-
cates the node wishes to consume d,, units from the network(it is a consumer node).

If a node has no associated integer, then it is merely a transit node, i.e., its total
inflow must equal its total outflow in any flow.

(a) Show how to use the standard (single-source single-sink) s — ¢ network flow
problem as a subroutine, to determine if there exists a flow in the network that
can support all supplier and consumer node requirements while honoring flow
constraints on the edges. Write the pseudo code.

(b) What is the running time of the overall algorithm (in terms of n and m), assuming
you use the Edmond-Karp BFS idea for the s — ¢ network flow problem.

5. Subset Sum Problem using dynamic programming. [144-2+4=20]

You are given a set of n items whose weights are represented in an array W/[l..n] and
you are given a integer K. All the weights and K are positive integers.

You are asked to determine if there exists a subset of the items such that their weights
add up exactly to K. For example if W = [1,8,4,6] and K = 7 the answer is Yes,
because W 1] + W[4] = 7. However, if K = 3 the answer is No, as no subset of the
four items have weights that add up to exactly 3.

This problem is an NP-Complete problem.

A recursive way to approach a solution is using the inclusion-exclusion idea: If there
exists such a subset, then either it is with the n'* item or without the n'* item
whose weight is W ([n]. At least one of these is true.

(a) Write pseudo-code for a dynamic programming solution to this problem.
Hint: Use the idea above to formulate a dynamic programming solution, where
the it row , w'* column entry in the matrix is a boolean value representing if
there exists a subset of the first ¢ items (with with weights Wl..i]) such that
their weights add up exactly to w. Consider what to do when w =0 or ¢ = 0.

(b) Analyze the running time of your algorithm. Why is it not considered to be a
polynomial time algorithm?

(c) Show the result of the algorithm on the example given with K = 7. Only show
the state of the matrix after each row is filled.



